Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon
نویسندگان
چکیده
It is unclear why atmospheric oxygen remained trapped at low levels for more than 1.5 billion years following the Paleoproterozoic Great Oxidation Event. Here, we use models for erosion, weathering and biogeochemical cycling to show that this can be explained by the tectonic recycling of previously accumulated sedimentary organic carbon, combined with the oxygen sensitivity of oxidative weathering. Our results indicate a strong negative feedback regime when atmospheric oxygen concentration is of order pO2∼0.1 PAL (present atmospheric level), but that stability is lost at pO2<0.01 PAL. Within these limits, the carbonate carbon isotope (δ13C) record becomes insensitive to changes in organic carbon burial rate, due to counterbalancing changes in the weathering of isotopically light organic carbon. This can explain the lack of secular trend in the Precambrian δ13C record, and reopens the possibility that increased biological productivity and resultant organic carbon burial drove the Great Oxidation Event.
منابع مشابه
The rise of oxygen and siderite oxidation during the Lomagundi Event.
The Paleoproterozoic Lomagundi Event is an interval of 130-250 million years, ca. 2.3-2.1 billion years ago, in which extraordinarily (13)C enriched (>10‰) limestones and dolostones occur globally. The high levels of organic carbon burial implied by the positive δ(13)C values suggest the production of vast quantities of O2 as well as an alkalinity imbalance demanding extremely low levels of wea...
متن کاملArsenic stress after the Proterozoic glaciations
Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmosp...
متن کاملMountain glaciation drives rapid oxidation of rock-bound organic carbon
Over millions of years, the oxidation of organic carbon contained within sedimentary rocks is one of the main sources of carbon dioxide to the atmosphere, yet the controls on this emission remain poorly constrained. We use rhenium to track the oxidation of rock-bound organic carbon in the mountain watersheds of New Zealand, where high rates of physical erosion expose rocks to chemical weatherin...
متن کاملEnhanced chemical weathering and organic carbon burial as environmental recovery factors of the OAE2; a case study in the Koppeh-Dagh Basin (NE Iran)
A late Cenomanian-early Turonian interval (Hamam-ghaleh section) adjusted with the transition of Aitamir and Abderaz formations has been investigated in the east of Koppeh-Dagh Basin to examine environmental perturbations related to the oceanic anoxic event 2. The dark shale of the upper Aitamir Formation indicate higher organic matter concentrations especially in the two intervals at the end o...
متن کاملA theory of atmospheric oxygen.
Geological records of atmospheric oxygen suggest that pO2 was less than 0.001% of present atmospheric levels (PAL) during the Archean, increasing abruptly to a Proterozoic value between 0.1% and 10% PAL, and rising quickly to modern levels in the Phanerozoic. Using a simple model of the biogeochemical cycles of carbon, oxygen, sulfur, hydrogen, iron, and phosphorous, we demonstrate that there a...
متن کامل